Developing an HIV/AIDS Vaccine

Developing a vaccine involves using a disease-causing agent (e.g., virus, bacterium) to stimulate the immune system to launch a protective response. Once the immune system recognizes the virus or bacterium and develops antibodies to it, vaccination (injecting a person with a vaccine) establishes immunity to the infectious disease.

A vaccine that protects people from infection is called a preventative vaccine and a vaccine that prevents disease in infected people is called a therapeutic vaccine. Sometimes, two or more vaccines are combined, such as the measles, mumps, and rubella (MMR) vaccine.

In some cases, people who have been repeatedly exposed to HIV remain HIV negative or never develop AIDS. Presumably, they have developed natural immunity (i.e., their immune system recognized HIV and their immune response successfully eliminated the virus). The fact that a person can be exposed to HIV and never develop HIV/AIDS indicates that the immune system is capable of successfully responding to HIV infection.

Studies in parts of West Africa, where both HIV-1 and HIV-2 are prevalent, have shown that people who are infected with HIV-2 may be less likely to become infected with HIV-1. In these cases, HIV-2, which is weaker than HIV-1, may be acting like a vaccine and instructing the immune system to recognize and mount an immune response to the more potent HIV-1.

Vaccine Types

There are three types of vaccine:

  • Subunit vaccines are made up of parts of the virus. This is the safest type of vaccine because it does not contain infectious material.
  • Killed whole-virus vaccines are whole viruses that have been inactivated so that they are no longer infectious. These vaccines often cause side effects associated with infection.
  • Live vaccines are made of viruses that have been weakened so that they are much less infectious. These vaccines are the least safe because they may cause rather than prevent disease, especially in people with compromised immune systems.

Experimental Vaccines

Once vaccines have been developed in the laboratory and tested in animal models, they are tested in humans in a series of clinic trials. It takes approximately 15 years to complete all 3 phases of testing and receive approval from the U.S. Food and Drug Administration (FDA).

Once an Institutional Review Board (IRB) has determined that the tests and procedures are sound and that the risk to humans has been minimized, the vaccine is subjected to the following clinical trials:

  • Phase I: Studies involve fewer than 20–80 healthy volunteers. Safety, dosage, the immune response, and immunization schedule are determined. This phase may take 1–2 years to complete.
  • Phase II: Studies involve 100–300 volunteers, composed of low-risk and high-risk people in the population where the Phase III trial is expected to occur. Safety, efficacy, dosage, and the immunization schedule are evaluated. This phase takes at least 2 years to complete.
  • Phase III: Studies involve 1000–3000 high-risk volunteers in areas where HIV is spreading. Safety and efficacy are tested. This phase takes 3 or more years to complete.

It takes another 1–2 years for the FDA to review and approve (or not approve) the vaccine.

The first HIV vaccine clinical trial began in 1987, and since then, development of a safe, effective HIV vaccine has become a worldwide priority. In July of 2005, the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health (NIH), announced funding to establish the Center for HIV/AIDS Vaccine Immunology (CHAVI) to help accelerate vaccine development.

In May 2012, the National Institute of Allergy and Infectious Diseases of the NIH issued a statement reporting an increasing confidence among researchers that the HIV/AIDS pandemic can be significantly reduced through the implementation of scientifically-proven prevention strategies. However, with the approximately 2.1 million new HIV cases worldwide in 2010, it is evident that an HIV vaccine is necessary to control, and eventually prevent, the spread of HIV. According to the NIH, ongoing clinical trials have yielded several encouraging findings that may soon lead to the development of a safe, effective vaccine for HIV.

HIV/AIDS Vaccine

Scientists face the following challenges when designing and developing an HIV/AIDS vaccine:

  • The immune system response to HIV is not well understood.
  • There is no ideal animal model to help scientists study the immune system response.
  • The many modes of transmission and forms of HIV must be understood and targeted to develop a safe, effective vaccine.
  • HIV is constantly mutating.
  • HIV slowly works into immune system cells, where it may reside for years before affecting health.

Despite these challenges, the history of vaccine development provides encouragement:

  • Several vaccines have been developed in the past without a complete understanding of the immune response (e.g., whooping cough).
  • Several vaccines have been developed without the use of an ideal animal model (e.g., measles, mumps, rubella). The less than ideal SIV (simian immunodeficiency virus) monkey model has provided important, relevant information about HIV.
  • Vaccines can be combined (e.g., measles, mumps, rubella). The complex immune response to HIV could be targeted by more than one vaccine.
  • Scientists developed an effective vaccine for hepatitis B, which is also transmitted in many different ways.
  • Scientists have developed vaccines for other slow-acting viruses (e.g., feline leukemia virus, equine infectious anemia virus).
  • Vaccines can control viruses even after a person has been infected for years (e.g., measles).

Publication Review By: Stanley J. Swierzewski, III, M.D.

Published: 14 Nov 2007

Last Modified: 12 Aug 2015